

Knowledge Acquisition and Exploitation to Enhance STAP Performance

Technology Service Corporation 6515 Main Street
Trumbull, CT 06611
(203) 268-1249

(203) 452-0260 (Fax)

email: acorbeil@tsc.com

cmorgan@tsc.com rpierro@tsc.com Presented by: Allan Corbeil

Dr. Charles Morgan

Richard Pierro

at: KASSPER Workshop

Las Vegas, NV

on: April 15, 2003

Introduction

- STAP performance can be enhanced by exploiting thematically/spatially accurate and temporally current Digital Elevation Maps and Land Use/Land Cover databases
 - Prefilter known clutter interference using covariance model
 - Exclude resolution cells from covariance estimate
 - Delimit surveillance area to where movers are likely
- Extract knowledge that can be utilized in advanced STAP algorithms being developed by TSC and other KASSPER researchers
 - Full and reduced dimension STAP architectures
- Improve the accuracy of existing data bases through sensor signal processing
 - DEM generation and strong scatterer geolocation from GMTI dwells
 - On/off-board SAR and Interferometric SAR image exploitation

DEM Generation Techniques

More accurate DEMs can benefit STAP in several ways

- Improved mapping of known scatterers (discretes and movers) from object database into GMTI radar resolution cells for censoring
- Better prediction of shadow regions and strong clutter backscattering geometries from sloped terrain to select secondary data sets

• TSC is investigating both stereo and interferometric processing of GMTI clutter maps

- Stereo processing is based on correlating the GMTI clutter maps collected on two flight legs which have different elevation look angles
- Interferometric processing is based on phase difference from elevation diversity provided by aircraft pitch and widely-spaced horizontal apertures

• Utilizing SAR-based GMTI simulation to evaluate DEM generation accuracy for specific sites where SAR imagery is available

Synthesize CPIs for arbitrary sensor platform position

SAR-Based GMTI Simulation

- TSC is utilizing ERIM IFSAR data to simulate GMTI clutter maps with high fidelity to evaluate DEM generation accuracy
 - Provides registered SAR magnitude and terrain height with 2.5 m postings and Level 3 DTED accuracy
- Model radar characteristics and 3-D geometry to produce data cubes (pulse x range x aperture)

Slant range/squint angle
 Multiple apertures

Antenna beam footprint
 Internal clutter motion

Range/Doppler resolution
 Clutter amplitude distribution

Radar 3-D position and velocity - Receiver noise

• Data can also support investigation of techniques to exploit SAR imagery to enhance STAP performance

Multiple Aperture Geometry for SAR-Based GMTI Simulation

SAR-Based Simulation of Range-Doppler Maps (2.5m Postings)

0 200 400 600 800 1000

100 - 200 - 25 - 25 - 20 - 15 - 600 - 700 - 800 - 900 - 5

Shadowing (0,1)

100
200
400
500
700
0
200
400
800
1000
0
200
400
800
1000

200 400 600 800 1000

SAR Magnitude (dB)

KASSPER

Shadowed Magnitude (dB)

Shadowed Magnitude with Antenna Gain (dB)

TSC-CT102-557-BR-507 Page 6

Effect of CPI Length on Simulated Range-Doppler Maps

• GMTI map has similar features to original SAR image

- Can discern shadow regions and water boundaries when present
- Different terrain types produce unique texture that can be exploited for map registration

32-Pulse CPI, 1 kHz PRF, Aperture #1

256-Pulse CPI, 1 kHz PRF, Aperture #1

Stereo Processing Investigation

- Defined nominal race-track surveillance path for single or multiple platforms to cover region of interest
 - Altitude diversity to maximize elevation difference
 - Beam tiling to cover region of interest
- Investigating three modes of operation
 - Single set of MTI dwells at leg midpoint
 - Average MTI dwells over entire leg
 - Tomographic processing over entire leg to enhance cross-range resolution
- Studying effect of dwell length and averaging on resultant DEM accuracy
 - Same GMTI dwell versus longer CPI
 - Averaging reduces clutter scintillation and increases effective CNR
 - Collecting statistics over multiple passes could also benefit STAP

LOS

KASSPER
KNOWLEGG AUGU SIMAN GENAR PROCESSIO

AIRCRAFT PATH

Preliminary Stereo DEM Generation Results

IFSAR MAGNITUDE

IFSAR HEIGHT

40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 180 ESTIMATED DEM

Enhancement of MTI Cross-Range Resolution through Tomographic Processing

- Cross-range resolution is much coarser than down-range resolution for typical MTI maps
 - KASSPER/MCARM = 200x
 - Joint STARS = 20x
- Averaging MTI maps sharpens cross-range by overlapping footprints at different aspect angles
 - Effective only for limited range of aspect angles
- Noncoherent tomography offers greater crossrange resolution enhancement for stereo processing
 - Form range shadow graph at each aspect angle (radon transform)
 - Filtered back-projection of shadow graphs are accumulated
 - Correlate the sharpened MTI maps to derive height information (stereo processing)

Examples of Noncoherent Tomographic Processing 20-to-1 Cross Range Blurring

Single-Look MTI Map

Average MTI Map

120 deg

140 deg

160 deg

180 deg

TSC-CT102-557-BR-507 Page 11

Exploitation of Interferometric Imagery or SAR/Registered DTED

- Can provide information on strong scatterers that interfere with nearby weak target signals
 - All discretes are not in database (new structures, parked vehicles, natural objects)
 - Strong distributed terrain backscattering (near-normal orientation, dense vegetation)
- Requires SAR and GMTI data from same region to investigate concepts such as:
 - Excising resolution cells with strong clutter in SAR image from secondary data set
 - Adaptive detection thresholding based on SAR amplitude statistics or textural features at corresponding location
 - Prefiltering of strongest clutter regions found in SAR image
 - Select secondary data set based on terrain type determined from SAR
- Utilizing SAR-based GMTI simulation for algorithm development

Example of Using SAR and DTED to Identify Strong Scattering Regions

SAR Imagery: 3 m x 3 m Resolution

Synthesized GMTI Clutter Map: 10 m Range, 5 Hz Doppler Resolution

Level-3 DTED

GMTI Range/Doppler Cells Whose Corresponding SAR Magnitude Exceeds Threshold

Advanced Angle/Doppler Estimation Techniques

- Improve geolocation of large discretes and movers to enhance STAP performance
 - Excise corresponding resolution cells or prefilter these strong returns from secondary data set
 - Predict detections from azimuth and Doppler sidelobes to reject false alarms
- Investigating several methods to operate with full or reduced dimension STAP
 - MLE, Minimum Variance Estimator, and Prony's method
 - Compare with conventional beam and filter splitting
- Associating STAP MLE detections with ground truth from 2003 KASSPER data cube for preliminary investigation
 - Full dimension STAP with censoring of discretes and movers
 - PRI-staggered, post-Doppler STAP architecture

Knowledge of Terrain Cell Reflectivity Aids in Associating False Alarms with Strong Distributed Clutter

Range vs. Azimuth: SCATS Ground Truth, MLE, 5 PRI Staggers, Discrete/Target Censoring, 10-7 Pfa

Planned Work

- Quantify the benefits of improved knowledge on STAP performance
 - Increased DEM accuracy from stereo or interferometric processing
 - Reliable LU/LC map from GMTI clutter or registered SAR imagery
 - Improved location of discretes and terrain backscattering
- Evaluate sensor, processing and platform requirements for knowledge acquisition
 - Determine optimal GMTI dwell length, aperture size, and flight profile
- Demonstrate stereo DEM generation from measured clutter data
 - Joint STARS flights with elevation aspect change
- Use GMTI simulation to develop techniques that exploit SAR/DTED information and enhance STAP performance
- Investigate array calibration techniques
 - Exploit knowledge of distributed/discrete clutter or active RF sources
 - Correct channel amplitude and phase imbalances

